
International Journal of Research in Advent Technology, Vol.4, No.5, May 2016 
E-ISSN: 2321-9637 

Available online at www.ijrat.org  
 

127 
 

A Comparative Study on Name Matching Algorithms 
 

Abha Chaudhary1, Nidhi Wakchoure2, Nilkamal Gotarne3, Paulomi Nath4 

Prof. Bhagyashree Dhakulkar5 

Computer Engineering Department, Final Year Students DYPSOET, Pune, Maharashtra, India1, 2, 3, 4 

Computer Engineering Department, Professor DYPSOET, Pune, Maharashtra, India5 
Email: abha.bittu@gmail.com1,bhagyashree.dhakulkar@dypic.in5 

   
 
Abstract-Name matching plays an important role in many database and data mining applications. Data 
comparison and duplication detection helps in updating databases in organization as well as in identification 
purpose e.g. identifying individual using ID system. There are various matching techniques for comparison, 
record linkage, duplication detection etc.  This paper gives basic description of several name matching 
algorithms which succeeded in dealing with name variation. 
 

Index Terms- Name matching; Duplicate detection; Record linkage; Algorithms. 

1. INTRODUCTION 

Nowadays name matching plays an important in 
organizations as well as in identification purpose e.g. 
Identification of an individual using ID system, 
matching different datasets in an organization. This 
involves matching of string, for which many 
algorithms are proposed. 

Many problems occur in searching and matching 
databases where it is important for a system to 
compare information or names of different people and 
to make a decision whether they are same or not. The 
matching algorithms are basically of three types. First 
type is based on sounds. List of rules are applied on 
the name or word to compress it into a sound code. 
Phonetic structure of a language is used in these 
algorithms in addition to standard sounds to match 
names which sound the same e.g. Soundex algorithm 
and its variants. 

Another type is based on edit distance of two 
strings. To match two strings edits are used to make 
one string into another e.g. Monge-Elkan, Damerau-
Levenshtein, Jaro-Winkler etc. 

Third type is based on split strings into words or 
tokens. Algorithms fall into this category are Jaccard 
similarity and the TFIDF [1].String matching becomes 
problematic when variations and errors are more in 
names. Due to this, definite name matching leads to 
low results. It restricts identifying people, since it is 
not easy to find whether a name variation is a name of 
a different person or different spelling of the same 
person [2, 5]. 

The contribution of this paper is the outline of few 
of the matching algorithms. 

2. NAME MATCHING ALGORITHMS 

Following are few major name matching algorithms: 

2.1. Soundex 

Various regional names have range ethnic origins, that 
give us pronunciation of the names in same way but 
are spelled differently and vice versa e.g. “their” and 
“there”, both are pronounced same but spelled 
differently. There comes the soundex algorithm which 
is based on phonetic structure of language. In this, a 
written word is taken, such as individual’s name, as 
input, and character string is produced that determine 
a set of words which are phonetically alike. It uses a 
method which is based on phonetic classification of 
human speech sound. There are six phonetic 
classifications which are: Dental, Labiodentals, Velar, 
Alveolar, Glottal, and Bilabial. The vowels will not be 
encoded until it is the first letter while only consonants 
are encoded.  

The algorithm involves following steps: 

(1) Capitalize all letters and remove all punctuation. 
(2) Keep the first letter of the word 
(3) Convert all other occurrences of A, E, I, O, U, Y, 

H, W to 0. 
(4) As per the following sets change letters into digit: 

• B, F, P, V → 1 
• C, G, J, K, Q, S, X, Z  → 2 
• D, T → 3 
• L → 4 
• M, N → 5 
• R → 6 

(5) All pair of digits that occur beside each other 
from the string resulted in step 3, remove it. 



International Journal of Research in Advent Technology, Vol.4, No.5, May 2016 
E-ISSN: 2321-9637 

Available online at www.ijrat.org  
 

128 
 

(6) Drop all zeroes from the string resulting in step 5 
which are placed in step 3. 

(7) Pad the resulted string with trailing zeroes and 
only return first four position, in the form of 
<FIRST LETTER><DIGIT><DIGIT><DIGIT> 

For example: “Tiger” will be encoded as “T260” and 
“India” will be “I530” 

2.2.  Damerau-Levenshtein 

This algorithm is based on edit distance between the 
strings. Edit distance is the minimum cost sequence of 
edits that converts one string to other i.e., source string 
to target string. The edits involve insertion, deletion, 
substitution, inclusion, transposition or reversing of 
character. Each edit is assigned with the cost and 
resultant cost is based on minimum number of edits 
made to convert source string to target. 
As there are 5 allowed edits i.e. deletion, insertion, 
transposition of two adjacent character, substitution of 
single character and inclusion. One example of such: 
Distance between words Wait and Weight is 3 
E.g. 
Wait→ Weit (Substitution of ‘a’ to ‘e’) 
Weit→ Weigt (Insertion of ‘g’) 
Weigt→ Weight (Insertion of ‘h’) 

2.3.  Gotoh-Smith-Waterman 

Gotoh-Smith-Waterman algorithm was developed to 
find matching substrings of DNA or protein. It is a 
dynamic matching technique which is similar to the 
edit distance. The main difference between both is 
that, smith-waterman allows gaps and even character 
specific match scores. It uses positive scores for 
matching and penalties for every mismatch and gap. A 
gap penalty is known as affine. 
 
There are basically five operations: 

• An accurate match between any two 
characters with score 5 

• A fairly accurate match between any two 
alike characters 

• A difference between any two characters with 
score -5 

• Gap penalty with a score of -5 
• Penalty on gap continuation with score -1 

Space complexity is ( )21 ss ×Ο  and time 
complexity is ( )( )2121min ssss ×××Ο . 

(1)  

2.4. Monge-Elkan 

Monge-Elkan is a text string comparison method 
based upon internal character similarities measure in 
combination with token level similarities measure. A 
simple but very effective method for measuring the 
similarity between two text strings containing several 
tokens was proposed by Monge and Elkan. They used 

an internal similarity function ( )bamsi ,′  which is 

able to measure the similarity between individual 
tokens a and b. When given two texts A and B, |A| and 
|B| is their respective number of tokens, an inter-token 

measurement of similaritymsi ′ , monge-elkan 
computed as:  

( ) ( ){ }∑
=

=
′=

A

i

B

jjiMongeElkan bamsi
A

BAsim
1

1
,max

1
,  

The time complexity of Monge-Elkan is ( )BA ×Ο  

2.5.  Jaro-Winkler 

The Jaro-Winkler is the measurement of similarities 
between given two strings. In the area of record 
linkage for duplicate detection this algorithm is mainly 
used. The similarity of the strings depends upon the 
jaro-winkler distance. If Higher the jaro-winkler 
distance then more similar is both the strings. This 
algorithm is most suitable for short strings such as 
proper names. Score is usually normalized in a way 
that 1 equates the exact match and 0 equates no 
similarity.   
The distance dj of given two strings s1 and s2: 
 

 
otherwise   

3

1

  0m If                                  0

21

















 −++

=

=
n

tn

s

n

s

nd j  

Where, 
n is number of matched characters. 
t is of half the number of transpositions. 
The two of the characters from s1 and s2 are count as 
matching only if they are the same and not farther than  
 

( )
1

2

,smax 21 −






 s
 . 

 
Each character in s1 is compared with its matching 
character in s2. Number of matched character is 
divided by 2; it defines the number of transpositions.  
E.g. CRATE comparing with TRACE, R, A, E are the 
matching characters that means n=3. Even if C and T 
appearing in both strings, they are farther than 1, here 
(5/2)-1=1. So, t=1.  
 



International Journal of Research in Advent Technology, Vol.4, No.5, May 2016 
E-ISSN: 2321-9637 

Available online at www.ijrat.org  
 

129 
 

Jaro-Winkler distance uses a prefix scale p which 
gives more favorable ratings to strings that match from 

the beginning for a set prefix lengthl . Given two 
strings s1 and s2, their jaro-winkler distance dw is: 
 

( )( )jpjw ddd −+= 1l  

 
Where: 
dj is the Jaro distance for strings s1 and s2. 

l  is the length of common prefix. 
p is a constant scaling factor. It is for how much score 
is adjusted. Should not exceed 0.25, the distance can 
become larger otherwise. 
Standard value of this constant in Winkler’s work is 
p=0.1. 

3. APPLICATIONS 

• Employee verification: To verify job 
experiences, performance and other core 
details of new coming employee from other 
organizations. 

• Identification system: Unique identification 
system, passport identification. 

• Organizational purpose: For the analysis of 
organization’s growth. E.g. matching 
customer record with survey record of 
company’s customer to analyze profit or loss 
in revenue. 
 

4. CONCLUSION 

We have discussed some name matching algorithms 
which gives basic idea about string matching. There 
are three types of algorithm we studied. First type is 
on sounds of language, second on edit distance, and 
third on splitting string into tokens. Every algorithm 
works different each other and can be used in different 
fields on the basis of exact match as well as 
approximate match. We noticed that gotoh-smith-
waterman works better for approximate match since it 
allows division of strings on the basis of gaps and 
Damerau-Levenshtein works better for exact match of 
short length strings. 

Acknowledgments 

We would like to thank Prof. Bhagyashree Dhakulkar 
for her guidance and immense dedication in providing 
us never ending knowledge for completing of domain 
research.  

REFERENCES 

[1] Philip Top, “A Dynamic Programming Algorithm 
for Name Matching” Proceedings of the 2007 

IEEE Symposium on Computational Intelligence 
and Data Mining (CIDM 2007). 

[2] Peter Christen Department of Computer Science, 
the Australian National University, “A 
Comparison of Personal Name Matching: 
Techniques and Practical Issues”, Sixth IEEE 
International Conference on Data Mining 
Workshops (ICDMW'06), 2006 IEEE. 

[3] Chakkrit Snae, “A Comparison and Analysis of 
Name Matching Algorithms”, International 
Scholarly and Scientific Research Innovation 1(1) 
2007. 

[4] Matteo Magnani, “A study on company name 
matching for database integration”, Department of 
Computer Science, University of Bologna, Via 
Mura A.Zamboni 7, 40127 Bologna, Italy. 

[5] Mikhail Bilenko and Raymond Mooney, 
University of Texas at Austin, “Adaptive Name 
Matching in Information Integration”, IEEE 
INTELLIGENT SYSTEMS Published by the 
IEEE Computer Society.  

[6] Timofey Medvedev, Alexander Ulanov, 
“Company Names Matching in the Large Patents 
Dataset”, Copyright 2011 Hewlett-Packard 
Development Company, L.P. 

[7] Truth Technologies, Inc., “Name and Address 
Matching Strategy”, White Paper for Release 
December, 2010. 

[8] Jeffrey Sukharev, “Parallel corpus approach for 
name matching in record linkage”, 2014 IEEE 
International Conference on Data Mining. 

[9] Antoon Bronselaer and Guy De Tr, “A 
Possibilistic Approach to String Comparison”, 
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 
VOL.17, NO. 1, FEBRUARY 2009. 

[10] Sergio Jimenez, “Generalized Mongue-Elkan 
Method for Approximate Text String 
Comparison”, A. Gelbukh (Ed.): Springer-Verlag 
Berlin Heidelberg 2009. 

[11] M. Riedel, “High Productivity Data Processing 
Analytics Methods” with Applications MIPRO 
2014, 26-30 May 2014, Opatija, Croatia.  


